OS31A-0978:
Divergent Ridge Features on the Juan de Fuca and Gorda Ridges

Wednesday, 17 December 2014
Mary Elizabeth Eaton, Leslie Sautter and Monica Steele, College of Charleston, Charleston, SC, United States
Abstract:
Multibeam data collected using a Kongsberg EM122 sonar system on the NOAA ship R/V Marcus G. Langseth led by chief scientist Douglas Toomey (University of Oregon) in 2009 and with a Simrad EM302 sonar system on two NOAA ship Okeanos Explorer cruises led by chief scientists James Gardner (University of New Hampshire) and Catalina Martinez (University of Rhode Island) in 2009 show the morphology of the Juan de Fuca and Gorda Ridges, as well as the Blanco and Mendocino Fracture Zones. These ridges and fracture zones comprise the divergent plate boundary of the eastern edge of the Pacific Plate and the western edges of the Juan de Fuca and Gorda Plates. Both plates are being subducted beneath the western edge of the North American Plate. CARIS HIPS 8.1 software was used to process the multibeam data and create bathymetric images. The ridge axes, located off the coast of Washington and Oregon (USA) adjacent to the Cascadia Basin, indicate obvious signs of spreading, due to the series of faults and rocky ridges aligned parallel to the plate boundaries. Fault and ridge orientations are used to compare the direction of seafloor spreading, and indicate that both the Juan de Fuca Plate and Gorda Plate are spreading in a southeastern direction. Younger ridges from the Gorda Ridge system mapped in the study run parallel to the boundary, however older ridges do not show the same orientation, indicating a change in spreading direction. The presence of hydrothermal vents along the Juan de Fuca Ridge is also evidence of the active boundary, as the vent chimneys are composed of minerals and metals precipitated from the hot water heated by magma from beneath the spreading seafloor. In this study, the data are used to compare and contrast earthquake seismicity and ridge morphologies at a depth range of approximately 762 to 2134 meters. The diverging Pacific, Juan de Fuca, and Gorda Plates along with the San Andreas Fault have potential to increase seismic and volcanic activity around the diverging plates and North America‚Äôs west coast.