MR11B-4319:
Integration of Petrophysical Methods and 3D Printing Technology to Replicate Reservoir Pore Systems

Monday, 15 December 2014
Sergey Ishutov, Franciszek Hasiuk, Joseph Gray and Chris Harding, Iowa State University, Ames, IA, United States
Abstract:
Pore-scale imaging and modeling are becoming routine geoscience techniques of reservoir analysis and simulation in oil and gas industry. Three-dimensional printing may facilitate the transformation of pore-space imagery into rock models, which can be compared to traditional laboratory methods and literature data. Although current methodologies for rapid rock modeling and printing obscure many details of grain geometry, computed tomography data is one route to refine pore networks and experimentally test hypotheses related to rock properties, such as porosity and permeability. This study uses three-dimensional printing as a novel way of interacting with x-ray computed tomography data from reservoir core plugs based on digital modeling of pore systems in coarse-grained sandstones and limestones.

The advantages of using artificial rocks as a proxy are to better understand the contributions of pore system characteristics at various scales to petrophysical properties in oil and gas reservoirs. Pore radii of reservoir sandstones used in this study range from 1 to 100s of microns, whereas the pore radii for limestones vary from 0.01 to 10s of microns. The resolution of computed tomography imaging is ~10 microns; the resolution of 3D digital printing used in the study varies from 2.5 to 300 microns. For this technology to be useful, loss of pore network information must be minimized in the course of data acquisition, modeling, and production as well as verified against core-scale measurements. The ultimate goal of this study is to develop a reservoir rock “photocopier” that couples 3D scanning and modeling with 3D printing to reproduce a) petrophyscially accurate copies of reservoir pore systems and b) digitally modified pore systems for testing hypotheses about reservoir flow. By allowing us to build porous media with known properties (porosity, permeability, surface area), technology will also advance our understanding of the tools used to measure these quantities (e.g. Mercury Injection or Nuclear Magnetic Resonance Porosimetry). Three-dimensional printing can offer a great potential of not only improving our approach to reservoir analysis and fluid flow simulation, but also facilitating more efficient oil and gas recovery.