S33A-4484:
Very long-period GPS waveforms. What can GPS bring to Earth seismic velocity models?

Wednesday, 17 December 2014
Krisztina Kelevitz1, Nicolas Houlie1, Tarje Nissen-Meyer2, Lapo Boschi3, Domenico Giardini1 and Markus Rothacher1, (1)ETH Swiss Federal Institute of Technology Zurich, Zurich, Switzerland, (2)University of Oxford, Department of Earth Sciences, Oxford, United Kingdom, (3)ISTeP Institut des Sciences de la Terre de Paris, Paris Cedex 05, France
Abstract:
It is now admitted that high rate GPS observations can provide reliable surface displacement waveforms. For long-period (T > 5s) transients, it was shown that GPS and seismometer (STS-1) displacements are in agreement at least for vertical component [Houlié et al., 2011]. We propose here to supplement existing long-period seismic networks with high rate (>= 1Hz) GPS data in order to improve the resolution of global seismic velocity models. We aim at extending the use of GPS measurements beyond the range of STS-1 in the low frequency end (T>1000s). We present the results of the processing of 1Hz GPS records of the Hokkaido, Sumatra and Tohoku earthquakes (25th of September, 2003, Mw = 8.3; 26th of December, 2004, Mw = 8.9; 11th of March, 2011, Mw = 9.1, respectively). 3D waveforms phase time-series have been used to recover the ground motion histories at the GPS sites. Through the better resolution of inversion of the GPS phase observations, we determine displacement waveforms of periods ranging from 30 seconds to 1300 seconds for a selection of sites. We compare inverted GPS waveforms with STS-1 waveforms, superconducting gravity waveforms and synthetic waveforms computed using 3D global wave propagation with SPECFEM. We find that the GPS waveforms are in agreement with the SPECFEM synthetic data and are able to fill the period-gap between the broadband seismometer STS-1 data and the normal mode period range detected by the superconducting gravimeters.

References:

Houlié, N., G. Occhipinti, T. Blanchard, N. Shapiro, P. Lognonne, and M. Murakami (2011), New approach to detect seismic surface waves in 1Hz-sampled GPS time series, Scientific reports, 1, 44.