T41A-4595:
Fractures Sets Associated to Buckle Folds

Thursday, 18 December 2014
Xiaolong Liu, Missouri University of Science and Technology, Rolla, MO, United States, Andreas Eckert, Missouri S&T, Rolla, MO, United States and Peter T Connolly, Chevron Corporation Houston, Houston, TX, United States
Abstract:
Buckle folds of single and multilayered sedimentary strata in the literature are commonly associated to a variety of different fracture sets, both shear and tensile. Amongst the most noticeable fractures are tensile fractures occurring in the outer hinges of the fold crest and shear fractures in the bottom of fold hinge zones. These fractures are well explained and understood by the extensional and compressional strain/stress pattern in the fold hinge. However, tensile fractures parallel to the fold axis, tensile fractures cutting through the limb, normal faults on the fold hinge, and shear fractures of different orientations in the fold limb cannot intuitively be linked to the stress regime occurring during the buckling process.

This study utilizes a 2D and 3D finite element modeling approach using Maxwell visco-elastic rheology to study the stress conditions during single and multilayer buckling for each fracture set to occur. The numerical simulations include sensitivity analyses on material parameters such as permeability, viscosity and overburden thickness. For fracture sets not likely to occur during the buckling process pre- and post folding processes such as initial overpressure, extensional unfolding, and erosional unloading are studied.