EP21D-3568:
Provenance of Modern Soils and Limestone and Chert Bedrock of Middle Tennessee Assessed Using Detrital Zircon U-Pb Geochronology

Tuesday, 16 December 2014
John C Ayers, Nathan James Katsiaficas and Xiaomei Wang, Vanderbilt University, Nashville, TN, United States
Abstract:
Relatively thick soils mantle limestone bedrock throughout much of middle TN. Detrital zircon U-Pb geochronology was used to test two hypotheses: 1) That soil formed by accumulation of insoluble residue during chemical weathering of "dirty" limestone bedrock. 2) That an exotic component, perhaps wind-blown loess, was deposited and weathered to form soil. Samples of soil and underlying bedrock were collected from flat surfaces at the tops of cliffs. At Site 1 the Mississippian cherty limestone of the Fort Payne Formation was collected along with the B1 and B2 horizons of the overlying ultisol. At Site 2 a composite sample of A and B horizons of an alfisol and a sample of the underlying Ordovician limestone of the Hermitage Formation were collected. Zircon was recovered from soil and limestone samples, imaged using cathodoluminescence, and analyzed for trace elements and U-Pb isotopes using a 193 nm laser and quadrupole ICP-MS. Discordant analyses were discarded and 206Pb/238U ages are reported.

Trace element concentrations and ratios in zircon seem to not be useful as provenance indicators. However, comparison of U-Pb age spectra showed that soils at both sites predominantly formed by weathering of limestone, with a small exotic component. The Hermitage has significant age peaks at ~1330, 1043, 955 and 439 Ma, and its overlying soil has age peaks at 1410, 1235, 1036 and 442 Ma. The age spectra are significantly different (Kolmogorov-Smirnov probability P = 0.01 < 0.05 significance). The Fort Payne has age peaks at ~1253, 967 and 417 Ma, while the B1 has age peaks at 1440, 1182, 1012 and 450 Ma (K-S P = 0.051) and the B2 at 1240, 941, 362, 81 and 33 Ma (K-S P = 0.073). The young ages in B2 require an exotic component that may account for ~25% of the measured ages. The source of the exotic material has not yet been identified, but its zircon age spectrum does not match previously published age spectra for the regional Pleistocene Peoria loess. Bedrock age peaks overlap with the Grenville, Taconic and Acadian orogenies of eastern North America. This study demonstrates that dating of detrital zircon is a powerful tool for determining the provenance of soil and limestone.