A23H-3346:
Projecting Future Changes in Extreme Weather During the North American Monsoon in the Southwest with High Resolution, Convective-Permitting Regional Atmospheric Modeling

Tuesday, 16 December 2014
Christopher L Castro, Hsin-I Chang, Thang Manh Luong, Timothy Lahmers, Megan Jares and Carlos M Carrillo, University of Arizona, Tucson, AZ, United States
Abstract:
Most severe weather during the North American monsoon in the Southwest U.S. occurs in association with organized convection, including microbursts, dust storms, flash flooding and lightning. Our objective is to project how monsoon severe weather is changing due to anthropogenic global warming. We first consider a dynamically downscaled reanalysis (35 km grid spacing), generated with the Weather Research and Forecasting (WRF) model during the period 1948-2010. Individual severe weather events, identified by favorable thermodynamic conditions of instability and precipitable water, are then simulated for short-term, numerical weather prediction-type simulations of 24h at a convective-permitting scale (2 km grid spacing). Changes in the character of severe weather events within this period likely reflect long-term climate change driven by anthropogenic forcing. Next, we apply the identical model simulation and analysis procedures to several dynamically downscaled CMIP3 and CMIP5 models for the period 1950-2100, to assess how monsoon severe weather may change in the future and if these changes correspond with what is already occurring per the downscaled renalaysis and available observational data. The CMIP5 models we are downscaling (HadGEM and MPI-ECHAM6) will be included as part of North American CORDEX. The regional model experimental design for severe weather event projection reasonably accounts for the known operational forecast prerequisites for severe monsoon weather. The convective-permitting simulations show that monsoon convection appears to be reasonably well captured with the use of the dynamically downscaled reanalysis, in comparison to Stage IV precipitation data. The regional model tends to initiate convection too early, though correctly simulates the diurnal maximum in convection in the afternoon and subsequent westward propagation of thunderstorms. Projected changes in extreme event precipitation will be described in relation to the long-term changes in thermodynamic and dynamic forcing mechanisms for severe weather. Results from this project will be used for climate change impacts assessment for U.S. military installations in the region.