GC41C-0579:
Resilience Simulation for Water, Power & Road Networks
Thursday, 18 December 2014
Susan Spierre Clark1, Thomas P. Seager1, Mikhail Chester1, Daniel Alexander Eisenberg1, Don Sweet2 and Igor Linkov3, (1)Arizona State University, Tempe, AZ, United States, (2)Rochester Institute of Technology, Rochester, NY, United States, (3)US Army Engineer Research and Development Center, Concord, MA, United States
Abstract:
The increasing frequency, scale, and damages associated with recent catastrophic events has called for a shift in focus from evading losses through risk analysis to improving threat preparation, planning, absorption, recovery, and adaptation through resilience. However, neither underlying theory nor analytic tools have kept pace with resilience rhetoric. As a consequence, current approaches to engineering resilience analysis often conflate resilience and robustness or collapse into a deeper commitment to the risk analytic paradigm proven problematic in the first place. This research seeks a generalizable understanding of resilience that is applicable in multiple disciplinary contexts. We adopt a unique investigative perspective by coupling social and technical analysis with human subjects research to discover the adaptive actions, ideas and decisions that contribute to resilience in three socio-technical infrastructure systems: electric power, water, and roadways. Our research integrates physical models representing network objects with examination of the knowledge systems and social interactions revealed by human subjects making decisions in a simulated crisis environment. To ensure a diversity of contexts, we model electric power, water, roadway and knowledge networks for Phoenix AZ and Indianapolis IN. We synthesize this in a new computer-based Resilient Infrastructure Simulation Environment (RISE) to allow individuals, groups (including students) and experts to test different network design configurations and crisis response approaches. By observing simulated failures and best performances, we expect a generalizable understanding of resilience may emerge that yields a measureable understanding of the sensing, anticipating, adapting, and learning processes that are essential to resilient organizations.