IN23C-3743:
The Condensate Database for Big Data Analysis
Tuesday, 16 December 2014
David W Gallaher1, Qin Lv1, Glenn Grant1, G. Garrett Campbell2 and Qi Liu1, (1)University of Colorado Boulder, Boulder, CO, United States, (2)University of Colorado at Boulder, Boulder, CO, United States
Abstract:
Although massive amounts of cryospheric data have been and are being generated at an unprecedented rate, a vast majority of the otherwise valuable data have been ``sitting in the dark'', with very limited quality assurance or runtime access for higher-level data analytics such as anomaly detection. This has significantly hindered data-driven scientific discovery and advances in the polar research and Earth sciences community. In an effort to solve this problem we have investigated and developed innovative techniques for the construction of ``condensate database'', which is much smaller than the original data yet still captures the key characteristics (e.g., spatio-temporal norm and changes). In addition we are taking advantage of parallel databases that make use of low cost GPU processors. As a result, efficient anomaly detection and quality assurance can be achieved with in-memory data analysis or limited I/O requests. The challenges lie in the fact that cryospheric data are massive and diverse, with normal/abnomal patterns spanning a wide range of spatial and temporal scales. This project consists of investigations in three main areas: (1) adaptive neighborhood-based thresholding in both space and time; (2) compressive-domain pattern detection and change analysis; and (3) hybrid and adaptive condensation of multi-modal, multi-scale cryospheric data.