SA23B-4074:
A Simulation Study of the Thermosphere Mass Density Response to Substorms Using GITM Model

Tuesday, 16 December 2014
Xianjing Liu, University of Michigan Ann Arbor, Ann Arbor, MI, United States and Aaron J Ridley, Univ Michigan, Ann Arbor, MI, United States
Abstract:
The temporal and spatial variations of the thermosphere mass density during a variety of idealized substorms were investigated using the Global Ionosphere Thermosphere Model (GITM) simulation and Challenging Minisatellite Payload (CHAMP) satellite. From the GITM simulation, the maximum mass density perturbation of an idealized substorm with a peak variation of Hemispheric Power (HP) Index of 50 GW and interplanetary magnetic field (IMF) Bz of -2 nT was ~14% about 50 min after the substorm onset in the nightside sector of the aurora zone. About 110 min after onset, a negative mass density perturbation (~-5%) occurred in the night sector, which was consistent with the mass density measurement of the CHAMP satellite. Further investigation suggests that a large scale in situ gravity wave was generated in the aurora zone and propagated to the mid and low latitudes. Simulations with IMF Bz changes, with HP being constant and HP changing and IMF Bz being constant were run to investigate any nonlinearities in the combined response. The mass density perturbation due the IMF Bz variation peaks in the dusk sector and the density perturbation due to HP input peaks in the nightside sector. The non-linear of the mass density response to different energy input is less than 6%. The thermospheric mass density at higher altitudes is more sensitive to the Joule heating energy input. The change in hemisphere power adds electron density to lower altitudes, so the heating due to the HP change is at lower altitudes than the heating due to the IMF Bz change. This causes the density change due to the HP change to be larger than the density change due to the IMF change.