H23Q-05:
Subsurface Flow in Gravel River Bars

Tuesday, 16 December 2014: 2:40 PM
Erin N Bray, University of California Berkeley, Berkeley, CA, United States and Thomas Dunne, Univ California Santa Barbara, Santa Barbara, CA, United States
Abstract:
The geomorphic and hydraulic characteristics of gravel bars control the direction, magnitude and spatial patterns of infiltration and exfiltration between rivers and their immediate subsurface environments. Bed undulation, water-surface gradient, alluvial depth, and the spatial variation of hydraulic conductivity (both deterministic trends and stochastic variability) affect the hydrologically-driven groundwater-surface water exchange. In this paper, we use a set of field measurements of morphological and hydrological characteristics along two reaches of the San Joaquin River, California to motivate a systematic analysis of the factors that affect paths and residence times of flow through gravel bars under an observed range of streamflow values. In the field investigation, it is shown that asymmetry of bar morphology is a first-order control on the extent and magnitude of infiltration, which is often represented to produce approximately equal areas of infiltration and seepage under the assumption of sinusoidal bedforms. Infiltration over the length of a bar is shown to be greater at low flow than at high flow because of the effect of water-surface gradient. Hydraulic conductivity (ksat) varies by orders of magnitude and systematic downstream coarsening arises related to the process of bar evolution. The lowest values of ksat were observed where the difference between the topographic gradient and the water-surface gradient is at a maximum and thus where the infiltration would be greatest into a uniform bar of homogeneous gravel. Morphology and fine sediment accumulation in recharge zones exert an important control over the mechanisms driving subsurface fluid exchange. Simulations from a numerical groundwater flow model that isolate the signatures of morphology and streambed sediment patterns on subsurface flow corroborate our interpretation that the infiltration patterns and rates are primarily controlled by bed morphology, with ksat playing a secondary role.