T43C-4750:
Seismic Stratigraphy of the Ross Island Flexural Basin, West Antarctica

Thursday, 18 December 2014
Christopher Paul Wenman1, Dennis Lee Harry2 and Sumant Jha2, (1)Colorado State University, Geosciences, Fort Collins, CO, United States, (2)Colorado State University, Fort Collins, CO, United States
Abstract:
Marine seismic reflection data collected over the past 30+ years in the Ross Sea region of southwest Antarctica has been tied to the ANDRILL and CIROS boreholes to develop a seismic stratigraphic model that constrains the spatial and temporal evolution of the flexural basin surrounding Ross Island. Ross Island was formed from 4.6 Ma to present by extrusive volcanism in the Ross Sea at the southern end of the Terror Rift. Preliminary mapping has identified a hinge zone trending northeastward from Mt. Bird, separating the well-developed flexural moat on the west side of the island from sub-horizontal strata on the northeast and east sides. The flexural moat on the west and north-northwest sides of the island is approximately 40-45 km wide with sediment fill thickness of roughly 1100 m. Seismic lines to the east and northeast of the island do not indicate the presence of a flexural moat. Instead, the thickness of strata on the east side of the island that are time-equivalent to the infill of the flexural moat on the west side remains constant from the Coulman High westward to within ~28 km of Ross Island (the landward extent of the seismic data coverage). The concordant post-Miocene strata on the east and northeast sides of Ross Island imply either that the flexural basin does not extend more than ~28 km eastward from the Ross Island shoreline, or that the flexural basin is not present on that side of the island. The first scenario requires that the elastic strength of the lithosphere differ on either side of the hinge. The second scenario can be explained by a mechanical rupture in the lithosphere beneath Ross Island, with Ross Island acting as an end-load on a mechanical half-plate that forms the lithosphere beneath Ross Island and westward. In this model, the lithosphere east of Ross Island and the hinge forms a second half-plate, bearing little or none of the Ross Island volcanic load.