Quantifying Modern Recharge to the Nubian Sandstone Aquifer System: Inferences from GRACE and Land Surface Models

Tuesday, 16 December 2014
Ahmed Mohamed1,2, Mohamed Sultan1, Mohamed Ahmed1,3 and Eugene Yan4, (1)Western Michigan University, Kalamazoo, MI, United States, (2)Assiut University, Asyut, Egypt, (3)Suez Canal University, Ismailia, Egypt, (4)Argonne Natl Lab-Bldg 203, Argonne, IL, United States
The Nubian Sandstone Aquifer System (NSAS) is shared by Egypt, Libya, Chad and Sudanand is one of the largest (area: ~ 2 × 106 km2) groundwater systems in the world. Despite its importance to the population of these countries, major hydrological parameters such as modern recharge and extraction rates remain poorly investigated given: (1) the large extent of the NSAS, (2) the absence of comprehensive monitoring networks, (3) the general inaccessibility of many of the NSAS regions, (4) difficulties in collecting background information, largely included in unpublished governmental reports, and (5) limited local funding to support the construction of monitoring networks and/or collection of field and background datasets. Data from monthly Gravity Recovery and Climate Experiment (GRACE) gravity solutions were processed (Gaussian smoothed: 100 km; rescaled) and used to quantify the modern recharge to the NSAS during the period from January 2003 to December 2012. To isolate the groundwater component in GRACE data, the soil moisture and river channel storages were removed using the outputs from the most recent Community Land Model version 4.5 (CLM4.5). GRACE-derived recharge calculations were performed over the southern NSAS outcrops (area: 835 × 103 km2) in Sudan and Chad that receive average annual precipitation of 65 km3 (77.5 mm). GRACE-derived recharge rates were estimated at 2.79 ± 0.98 km3/yr (3.34 ± 1.17 mm/yr). If we take into account the total annual extraction rates (~ 0.4 km3; CEDARE, 2002) from Chad and Sudan the average annual recharge rate for the NSAS could reach up to ~ 3.20 ± 1.18 km3/yr (3.84 ± 1.42 mm/yr). Our recharge rates estimates are similar to those calculated using (1) groundwater flow modelling in the Central Sudan Rift Basins (4-8 mm/yr; Abdalla, 2008), (2) WaterGAP global scale groundwater recharge model (< 5 mm/yr, Döll and Fiedler, 2008), and (3) chloride tracer in Sudan (3.05 mm/yr; Edmunds et al. 1988). Given the available global coverage of the temporal GRACE solutions for the past twelve years and plans are underway for the deployment of a GRACE follow-On and GRACE-II missions, we suggest that within the next few years, GRACE will probably become the most practical, informative, and cost-effective tool for monitoring the recharge of large aquifers across the globe.