C11A-0345:
Large-Scale Patterns of Waves in Partial Ice Cover in the Arctic Ocean

Monday, 15 December 2014
Madison Smith1, James M Thomson1 and William Rogers2, (1)Applied Physics Lab (UW), Seattle, WA, United States, (2)Naval Research Laboratory, Stennis Space Center, MS, United States
Abstract:
Surface waves are becoming a central feature of the emerging Arctic Ocean; however, few direct measurements of waves have been made. We present multi-year time series of wave height and ice draft from moorings at two locations in the Beaufort Sea, as well as wavelength and direction estimated from high-resolution satellite imagery. In situ wave and ice data are used to examine large-scale spatial and temporal patterns of waves in the previously ice-covered Arctic Ocean. In particular, we investigate the dependence of waves on ice-controlled fetch, and wave physics in partial ice cover in the Beaufort Sea. These results are compared with WaveWatch III hindcasts to evaluate the model’s accuracy in the marginal ice zone. We will expand on the approach of Thomson and Rogers (2014), who found that the energy of waves in the Arctic is directly correlated with open water distances. Incorporating new (2014) data collected throughout the marginal ice zone, we will examine adjustments to conventional fetch scaling laws in the presence of partial ice cover.