OS43D-1312:
North and South Atlantic Bidecadal SL variability: Rossby Waves, AMOC fingerprints and Regime Shifts

Thursday, 18 December 2014
Marcio Luiz Vianna, VM Oceanica Ltd, Sao Jose dos Campos, Brazil and Viviane V Menezes, University of Tasmania, Hobart, TAS, Australia
Abstract:
The relationship between the North and South Atlantic bidecadal sea level (SL) oscillations in the twentieth century (1908-2008) is investigated using SODA 2.2.4 reanalysis and 102 monthly mean SL time series from TG stations provided by PSMSL. Bidecadal SL signal extraction was done using our method of subjectively choosing groupings of space-time data into non-overlapping period bands by use of Singular Spectrum Analysis (SSA)/ Maximum Entropy Method (MEM) analysis. A CEOF analysis of the SODA bidecadal band shows dominance of 22–24 year periods. Propagating bidecadal mode expansions were then determined through this analysis, which gives two principal modes. The first mode is dominant from 1915 to 1965 and the second from 1970 onward. The amplitude variabilities obtained suggests the presence of regime shifts, which coincide in time with shifts actually observed in European climate and South African lobster fisheries. The first mode is characterized by states with North and South Atlantic subtropical gyres in phase, while tropical and subpolar regions are in opposite phase relative to them. The second mode is characterized by the subpolar gyre and North subtropical gyre almost in quadrature, with North and South subtropical gyres out of phase. The evolution mechanism of this latter mode is related to east-west density contrasts and westward propagating Rossby waves. These waves show phase speeds dominated by geostrophic self-advection of density anomalies relative to the mean meridional density gradient as known from previous studies, but are shown to be additionally influenced by bottom topography. The oscillations caused by these waves are shown to have phase differences (quadrature in the North Atlantic) with regional indices of bidecadal AMOC oscillations. A number of SL-AMOC fingerprints are also reviewed, and a new eastern equatorial fingerprint is proposed.