A43F-3340:
The impact of the observation nudging and nesting on the simulated meteorology and ozone concentrations from WRF-SMOKE-CMAQ during DISCOVER-AQ 2013 Texas campaign

Thursday, 18 December 2014
Yunsoo Choi, Xiangshang Li and Beata Czader, University of Houston, Houston, TX, United States
Abstract:
Three WRF simulations for the DISCOVER-AQ 2013 Texas campaign period (30 days in September) are performed to characterize uncertainties in the simulated meteorological and chemical conditions. These simulations differ in domain setup, and in performing observation nudging in WRF runs. There are around 7% index of agreement (IOA) gain in temperature and 9-12% boost in U-WIND and V-WIND when the observational nudging is employed in the simulation. Further performance gain from nested domains over single domain is marginal. The CMAQ simulations based on above WRF setups showed that the ozone performance slightly improved in the simulation for which objective analysis (OA) is carried out. Further IOA gain, though quite limited, is achieved with nested domains. This study shows that the high ozone episodes during the analyzed time periods were associated with the uncertainties of the simulated cold front passage, chemical boundary condition and small-scale temporal wind fields. All runs missed the observed high ozone values which reached above 150 ppb in La Porte on September 25, the only day with hourly ozone over 120 ppb. The failure is likely due to model’s inability to catch small-scale wind shifts in the industrial zone, despite better wind directions in the simulations with nudging and nested domains. This study also shows that overestimated background ozone from the southerly chemical boundary is a critical source for the model’s general overpredictions of the ozone concentrations from CMAQ during September of 2013. These results of this study shed a light on the necessity of (1) capturing the small-scale winds such as the onsets of bay-breeze or sea-breeze and (2) implementing more accurate chemical boundary conditions to reduce the simulated high-biased ozone concentrations. One promising remedy for (1) is implementing hourly observation nudging instead of the standard one which is done every three hours.