OS23A-1170:
Wastewater and Saltwater: Studying the Biogeochemistry and Microbial Activity Associated with Wastewater Inputs to San Francisco Bay

Tuesday, 16 December 2014
Tynan Challenor1, Aubriana Denise Menendez1, Julian Damashek2, Chris A. Francis1 and Karen L Casciotti3, (1)Stanford Earth Sciences, Stanford, CA, United States, (2)Stanford University, Stanford, CA, United States, (3)Stanford University, Los Altos Hills, CA, United States
Abstract:
Nitrification is the process of converting ammonium (NH­­4+) into nitrate (NO3-), and is a crucial step in removing nitrogen (N) from aquatic ecosystems. This process is governed by ammonia-oxidizing bacteria (AOB) and archaea (AOA) that utilize the ammonia monooxygenase gene (amoA). Studying the rates of nitrification and the abundances of ammonia-oxidizing microorganisms in south San Francisco Bay’s Artesian Slough, which receives treated effluent from the massive San Jose-Santa Clara Regional Wastewater Facility, are important for understanding the cycling of nutrients in this small but complex estuary. Wastewater inputs can have negative environmental impacts, such as the release of nitrous oxide, a byproduct of nitrification and a powerful greenhouse gas. Nutrient inputs can also increase productivity and sometimes lead to oxygen depletion. Assessing the relative abundance and diversity of AOA and AOB, along with measuring nitrification rates gives vital information about the biology and biogeochemistry of this important N-cycling process. To calculate nitrification rates, water samples were spiked with 15N-labeled ammonium and incubated in triplicate for 24 hours. Four time-points were extracted across the incubation and the “denitrifier” method was used to measure the isotopic ratio of nitrate in the samples over time. In order to determine relative ratios of AOB to AOA, DNA was extracted from water samples and used in clade-specific amoA PCR assays. Nitrification rates were detectable in all locations sampled and were higher than in other regions of the bay, as were concentrations of nitrate and ammonium. Rates were highest in the regions of Artesian Slough most directly affected by wastewater effluent. AOB vastly outnumbered AOA, which is consistent with other studies showing that AOB prefer high nutrient environments. AOB diversity includes clades of Nitrosospira and Nitrosomonas prevalent in estuarine settings. Many of the sequenced genes are related to estuarine sediment found at other sites in the San Francisco Bay as well as the Chesapeake Bay, China East Sea, and Pearl River Estuary. Our data provide evidence for the path that N takes once entering the estuary and also further characterize the behavior of nitrifying microorganisms in extremely high-nutrient aquatic environments.