Evaluation of NLDAS-2 Multi-Model Simulated Soil Moisture Using the Observations from North American Soil Moisture Dataset (NASMD)

Monday, 15 December 2014
Youlong Xia1, Michael B Ek1, Yihua Wu1, Trent Ford2 and Steven M Quiring2, (1)Environmental Modeling Center, College Park, MD, United States, (2)Texas A&M University, College Station, TX, United States
The North American Land Data Assimilation System phase 2 (NLDAS-2, http://www.emc.ncep.noaa.gov/mmb/nldas/) has generated 35-years (1979-2013) of hydrometeorological products from four state-of-the-art land surface models (Noah, Mosaic, SAC, VIC). These products include energy fluxes, water fluxes, and state variables. Soil moisture is one of the most important state variables in NLDAS-2 as it plays a key role in land-atmosphere interaction, regional climate and ecological model simulation, water resource management, and other study areas. The soil moisture data from these models have been used for US operational drought monitoring activities, water resources management and planning, initialization of regional weather and climate models, and other meteorological and hydrological research purposes. However, these data have not yet been comprehensively evaluated due to the lack of extensive soil moisture observations. In this study, observations from over 1200 sites in the North America compiled from 27 observational networks in the North American Soil Moisture Database (NASMD, http://soilmoisture.tamu.edu/) were used to evaluate the model-simulated daily soil moisture for different vegetation cover varying from grassland to forest, and different soil texture varying from sand to clay. Seven states in the United States from NASMD were selected based on known measurement error estimates for the evaluation. Statistical metrics, such as anomaly correlation, root-mean-square errors (RMSE), and bias are computed to assess NLDAS-2 soil moisture products. Three sensitivity tests were performed using the Noah model to examine the effect of soil texture and vegetation type mismatch on NLDAS-2 soil moisture simulation. In the first test, site observed soil texture was used. In the second test, site observed vegetation type/land cover was used. In the third test, both site observed soil texture and vegetation type were used. The results from three sensitivity tests will be compared with NLDAS-2 Noah and observed soil moisture. This presentation reports major results from this evaluation.