Destruction and Re-Accretion of Mid-Size Moons During an Outer Solar System Late Heavy Bombardment

Thursday, 18 December 2014
Naor Movshovitz1, Francis Nimmo2, Donald G Korycansky1, Erik I Asphaug3 and Mike Owen4, (1)University of California-Santa Cruz, Santa Cruz, CA, United States, (2)University of California-Santa Cruz, Department of Earth and Planetary Sciences, Santa Cruz, CA, United States, (3)Arizona State University, Tempe, AZ, United States, (4)Lawrence Livermore National Laboratory, Livermore, CA, United States
To explain the lunar Late Heavy Bombardment the Nice Model (Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. 2005, Nature, 435, 459; Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. 2005, Nature, 435, 459) invokes a period of dynamical instability, occurring long after planet formation, that destabilizes both the main asteroid belt and a remnant exterior planetesimal disk. As a side effect of explaining the lunar LHB, this model also predicts an LHB-like period in the outer Solar System. With higher collision probabilities and impact energies due to gravitational focusing by the giant planets the inner satellites of Jupiter, Saturn, and Uranus would have experienced a bombardment much more severe than the one supposedly responsible for the lunar basins. The concern is that such bombardment should have resulted in significant, even catastrophic modification of the mid-size satellites.

Here we look at the problem of satellite survival during a hypothetical outer Solar System LHB. Using a Monte-Carlo approach we calculate, for 10 satellites of Saturn and Uranus, the probability of having experienced at least one catastrophic collision during an LHB. We use a scaling law for the energy required to disrupt a target in a gravity-dominated collision derived from new SPH simulations. These simulations extend the scaling law previously obtained by Benz & Asphaug (1999, Icarus, 142, 5) to larger targets. We then simulate randomized LHB impacts by drawing from appropriate size and velocity distributions, with the total delivered mass as a controlled parameter. We find that Mimas, Enceladus, Tethys, Hyperion, and Miranda experience at least one catastrophic impact in every simulation. In most simulations, Mimas, Enceladus, and Tethys experience multiple catastrophic impacts, including impacts with energies several times that required to completely disrupt the target. The implication is that these close-in, mid-size satellites could not have survived a Late Heavy Bombardment unmodified, unless the mass delivered to the outer Solar System was at least 30 times less that the value predicted by the Nice Model, or 10 times less than the reduced value more recently suggested by Dones & Levison (2013, in 44th Lunar Planet. Sci. Conf.).