V52A-08:
Real Time Pore Structure Evolution during Olivine Mineral Carbonation

Friday, 19 December 2014: 12:05 PM
Wenlu Zhu1, Florian Fusseis2, Harrison P Lisabeth1 and Xianghui Xiao3, (1)University of Maryland College Park, College Park, MD, United States, (2)University of Edinburgh, Edinburgh, United Kingdom, (3)Argonne National Laboratory, Argonne, IL, United States
Abstract:
Aqueous carbonation of ultramafic rocks has been proposed as a promising method for long-term, secure sequestration of carbon dioxide. While chemical kinetics data indicate that carbonation reaction in olivine is one of the fastest among the mg-bearing minerals, in practice, the factors that limit the extent and rate of carbonation in ultramafic rocks are fluid supply and flux. On the one hand, reaction products could produce passivating layer that prohibits further reactions. On the other hand, the increases in solid volume during carbonation could lead to cracking and create new fluid paths. Whether carbonation in ultramafic rocks is self-limiting or self-sustaining has been hotly debated. Experimental evidence of precipitation of reaction products during olivine carbonation was reported. To date, reaction-driven cracking has not been observed. In this paper, we present the first real-time pore structure evolution data using the x-ray synchrotron microtomography. Sodium bicarbonate (NaHCO3) solution was injected into porous olivine aggregates and in-situ pore structure change during olivine carbonation at a constant confining pressure (12 MPa) and a temperature of 200oC was captured at 30 min. interval for ~160 hours. Shortly after the experiment started, filling-in of the existing pores by precipitation of reaction products was visible. The size of the in-fills kept increasing as reactions continued. After ~48 hours, cracking around the in-fill materials became visible. After ~60 hours, these cracks started to show a clear polygonal pattern, similar to the crack patterns usually seen on the surface of drying mud. After ~72 hours, some of the cracks coalesced into large fractures that cut-through the olivine aggregates. New fractures continued to develop and at the end of the experiment, the sample was completely disintegrated by these fractures. We also conducted nanotomography experiments on a sub-volume of the reacted olivine aggregate. Orthogonal sets of incipient cracks were observed, providing clear evidence that these cracks are generated by isotropic tensile stresses. This strongly indicates that the observed cracking was caused by volume expansion during mineral carbonation. The experimental results provide a mechanism for near 100% alteration of ultramafic rocks observed in nature.