Streamflow model of the six-country transboundary Ganges-Bhramaputra and Meghna river basin

Wednesday, 17 December 2014
Kazi Rahman, Stanford University, Environmental Earth System Science, Stanford, CA, United States, Anthony Lehmann, University of Geneva, Environmental Science, Geneva, Switzerland, P. James Dennedy-Frank, Stanford University, Stanford, CA, United States and Steven Gorelick, Stanford University, Los Altos Hills, CA, United States
Extremely large-scale river basin modelling remains a challenge for water resources planning in the developing world. Such planning is particularly difficult in the developing world because of the lack of data on both natural (climatological, hydrological) processes and complex anthropological influences. We simulate three enormous river basins located in south Asia. The Ganges-Bhramaputra and Meghna (GBM) River Basins cover an area of 1.75 million km2 associated with 6 different countries, including the Bengal delta, which is the most densely populated delta in the world with ~600 million people. We target this developing region to better understand the hydrological system and improve water management planning in these transboundary watersheds. This effort uses the Soil and Water Assessment Tool (SWAT) to simulate streamflow in the GBM River Basins and assess the use of global climatological datasets for such large scale river modeling. We evaluate the utility of three global rainfall datasets to reproduce measured river discharge: the Tropical Rainfall Measuring Mission (TRMM) from NASA, the National Centers for Environmental Prediction (NCEP) reanalysis, and the World Metrological Organization (WMO) reanalysis. We use global datasets for spatial information as well: 90m DEM from the Shuttle Radar Topographic Mission, 300m GlobCover land use maps, and 1000 km FAO soil map. We find that SWAT discharge estimates match the observed streamflow well (NSE=0.40-0.66, R2=0.60-0.70) when using meteorological estimates from the NCEP reanalysis. However, SWAT estimates diverge from observed discharge when using meteorological estimates from TRMM and the WMO reanalysis.