A33L-3360:
The Influence of Ocean on Typhoon Nuri (2008)
Wednesday, 17 December 2014
Jingru Sun1, Lie-Yauw Oey2, Fanghua Xu1, Yanluan Lin1, Shih-Ming Huang2 and Roger Chang2, (1)Tsinghua University, Beijing, China, (2)NCU National Central University of Taiwan, Jhongli, Taiwan
Abstract:
The influence of ocean on typhoon Nuri (2008) is investigated in this study using the WRF numerical model. Typhoon Nuri formed over the warm pool of the western North Pacific. The storm traversed west-northwestward and became a Category 3 typhoon over the Kuroshio east of the Luzon Strait and weakened as it moved across South China Sea. Three types of SST: NCEP RTG_SST (Real-time,global,sea surface temperature) GHRsst (Group for High Resolution Sea Surface Temperature) and SST from the ATOP North Pacific ocean model [Oey et al 2014, JPO] are used in WRF to test the effect of ocean on the intensity of typhoon Nuri. The typhoon intensity and track are also compared with simulations using different microphysics schemes but with fixed SST. The results show that thermodynamic control through ocean response is the dominant factor which determines Nuri’s intensity. The simulated intensity agrees well with the observed intensity when ATOP SST is used, while using NCEP SST and GHRsst yield errors both in intensity and timing of maximum intensity. Over the Kuroshio, the thicker depth of 26 ℃ from ATOP provides stronger heating for the correct timing of intensification of Nuri. In South China Sea, the storm weakened because of cooled SST through ocean mixing by inertial resonance. A new way of explaining typhoon intensification though PV is proposed.