Invasive and exotic earthworms: an unaccounted change to mercury cycling in northeastern US forest soils

Friday, 19 December 2014: 11:35 AM
Justin Byron Richardson1, Andrew J Friedland1, Josef H Görres2, Devon J. Renock1 and Brian P Jackson1, (1)Dartmouth College, Hanover, NH, United States, (2)University of Vermont, Burlington, VT, United States
Invasive and exotic earthworms are now present in many forested areas of the northeastern US with currently unquantified consequences to abiotic and biotic Hg cycling. To quantify these effects, we measured Hg concentrations (mg kg-1) and amounts (μg m-2) in earthworms and soil horizons at 45 soil pits from 9 sites in northern New England. Seven earthworm species were observed in varying assemblages. Most earthworm species attained concentrations of Hg potentially hazardous to wildlife that may ingest them, with highest concentrations found in shallow-burrowing, litter-feeders. Specifically, Aporrectodea rosea and Amynthas agrestis had the greatest Hg concentrations (0.9 ± 0.1) and Hg amounts (8 ± 2) μg m-2. Aporrectodea rosea and Amynthas agrestis were found to inhabit the forest floor and the top 5 cm of the mineral horizons in high abundance, potentially making it a readily accessible prey species. Bioaccumulation of Hg by invasive and exotic earthworms may be an important mechanism that transfers Hg to ground foraging predators, such as thrushes, red-backed salamanders and foxes, which is generally unaccounted for in terrestrial food chains. Earthworm Hg concentrations were poorly correlated with their respective soil Hg concentrations, suggesting a species dependence for Hg bioaccumulation rather than site effects.

We observed that forest floor Hg concentrations and amounts were 23% and 57% lower, respectively, at soil pits with earthworms compared to those without. Moreover, Hg amounts in forest floor-feeding earthworms exceeded the remaining forest floor Hg pools. Mercury concentrations and pools in the mineral soil were 21% and 33% lower, respectively, for soil pits with earthworms compared to those without. We hypothesize that enhanced decomposition, horizon disturbance and bioaccumulation by earthworms has decreased Hg amounts in the forest floor and mineral soil. Our results suggest that earthworms are decreasing Hg storage in forest soils with potential hazardous impacts for predatory animals in northeastern US forests and other ecosystems.