V43C-4909:
Distinctly different parental magmas for plutons and lavas in the central Aleutian arc

Thursday, 18 December 2014
Yue Cai1, Matthew E Rioux2, Peter B Kelemen1, Steven L Goldstein1, Louise Bolge1 and Andrew R Kylander-Clark2, (1)Lamont -Doherty Earth Observatory, Palisades, NY, United States, (2)University of California Santa Barbara, Santa Barbara, CA, United States
Abstract:
While it is generally agreed that continental crust is generated by arc magmatism, average arc lavas are basaltic while the bulk continental crust is andesitic, and this has led to many models for secondary reprocessing of the arc crust in order to form continental crust. We report new data on calc-alkaline plutons in the central Aleutians showing that they have distinctly different sources compared to Holocene tholeiitic lavas. Therefore the lavas are not representative of the net magmatic transfer from the mantle into the arc crust. Eocene to Miocene (9-39 Ma) intermediate to felsic plutonic rocks from the central Aleutian arc show higher SiO2 at a given Mg#, higher εNd- and εHf-values, and lower Pb isotope ratios than Holocene volcanic rocks from the same region. Instead, the plutonic rocks resemble volcanics from the western Aleutians isotopically, and have chemical compositions similar to bulk continental crust. These data could reflect temporal variation of Aleutian magma source compositions, from Eocene-Miocene “isotopically depleted” and predominantly calc-alkaline to Holocene “isotopically enriched” and predominantly tholeiitic. Alternatively, they may reflect different transport and emplacement processes for the magmas that form plutons and lavas: calc-alkaline magmas with higher Si content and high viscosity may preferentially form plutons, perhaps after extensive mid-crustal degassing of initially high water contents. The latter case implies that the upper and middle arc crust is more like the calc-alkaline bulk composition of the continental crust than the lavas alone. Crustal reprocessing mechanisms that preserve upper and middle arc crust, while removing lower arc crust, can account for the genesis and evolution of continental crust. Since gabbroic lower arc crust extends from ca 20-40 km depth, and is density stable over most of this depth range, “delamination” of dense lithologies [1] may not be sufficient to accomplish this. Alternatively, subduction erosion of arc crust followed by “relamination” [2] of buoyant calc-alkaline rocks may be more effective. [1] e.g. Ringwood & Green, Tectonophysics 1966; Herzberg et al. Contributions to mineralogy and petrology 1983; [2] e.g. Hacker et al. Earth and Planetary Science Letters 2011.