H21I-0832:
Streamflow Data Assimilation in SWAT Model Using Extended Kalman Filter
Tuesday, 16 December 2014
Leqiang Sun, Ioan Nistor and Ousmane Seidou, University of Ottawa, Department of Civil Engineering, Ottawa, ON, Canada
Abstract:
Although Extended Kalman Filter (EKF) is regarded as the de facto method for the application of Kalman Filter in non-linear system, it's application to complex distributed hydrological models faces a lot of challenges. Ensemble Kalman Filter (EnKF) is often preferred because it avoids the calculation of the linearization Jacobian Matrix and the propagation of estimation error covariance. EnKF is however difficult to apply to large models because of the huge computation demand needed for parallel propagation of ensemble members. This paper deals with the application of EKF in stream flow prediction using the SWAT model in the watershed of Senegal River, West Africa. In the Jacobian Matrix calculation, SWAT is regarded as a black box model and the derivatives are calculated in the form of differential equations. The state vector is the combination of runoff, soil, shallow aquifer and deep aquifer water contents. As an initial attempt, only stream flow observations are assimilated. Despite the fact that EKF is a sub-optimal filter, the coupling of EKF significantly improves the estimation of daily streamflow. The results of SWAT+EKF are also compared to those of a simpler quasi linear streamflow prediction model where both state and parameters are updated with the EKF.