EP53E-02:
Geomorphic and hydraulic controls on large-scale riverbank failure on a mixed bedrock-alluvial river system, the River Murray, South Australia: a bathymetric analysis.

Friday, 19 December 2014: 1:55 PM
Elyssa De Carli and Thomas Hubble, Geocoastal Research Group, School of Geosciences, The University of Sydney, Sydney, Australia
Abstract:
During the peak of the Millennium Drought (1997-2010) pool-levels in the lower River Murray in South Australia dropped 1.5 metres below sea level, resulting in large-scale mass failure of the alluvial banks. The largest of these failures occurred without signs of prior instability at Long Island Marina whereby a 270 metre length of populated and vegetated riverbank collapsed in a series of rotational failures. Analysis of long-reach bathymetric surveys of the river channel revealed a strong relationship between geomorphic and hydraulic controls on channel width and downstream alluvial failure. As the entrenched channel planform meanders within and encroaches upon its bedrock valley confines the channel width is ‘pinched’ and decreases by up to half, resulting in a deepening thalweg and channel bed incision. The authors posit that flow and shear velocities increase at these geomorphically controlled ‘pinch-points’ resulting in complex and variable hydraulic patterns such as erosional scour eddies, which act to scour the toe of the slope over-steepening and destabilising the alluvial margins. Analysis of bathymetric datasets between 2009 and 2014 revealed signs of active incision and erosional scour of the channel bed. This is counter to conceptual models which deem the backwater zone of a river to be one of decelerating flow and thus sediment deposition. Complex and variable flow patterns have been observed in other mixed alluvial-bedrock river systems, and signs of active incision observed in the backwater zone of the Mississippi River, United States. The incision and widening of the lower Murray River suggests the channel is in an erosional phase of channel readjustment which has implications for riverbank collapse on the alluvial margins. The prevention of seawater ingress due to barrage construction at the Murray mouth and Southern Ocean confluence, allowed pool-levels to drop significantly during the Millennium Drought reducing lateral confining support to the over-steepened channel margins triggering large-scale riverbank failure.