T51A-4604:
A geological evidence of very low frequency earthquake inferred from vitrinite thermal records across a microfault within on-land accretionary complex.
Abstract:
Generation of friction heat associated with fault slip is controlled by friction, slip distance and fault thickness. Nature of fault slip can be estimated from the record of frictional heating along a fault (e.g., Fulton et al., 2012). Purpose of this study is to detect the record of frictional heating along a microfault observed in on-land accretionary complex, Shimanto Belt, SW Japan using vitrinite reflectance (Ro) and to examine the characteristics of fault slip in deeper subduction zone.The study area is located in Nonokawa formation, the Cretaceous Shimanto Belt, in Kochi Prefecture, Southwest Japan. We found a carbonaceous material concentrated layer (CMCL) in the formation. Some micro-faults cut the layer. The thickness of CMCL is about 3-4m. Ro of host rock is about 0.98-1.1% and of fault rock is over 1.2%.
Kitamura et al. (2012) pointed out that fracturing energy may control the high Ro within fault zone. To avoid the effect of fracturing on Ro, we tired to detect a diffusion pattern of frictional heating in host rocks. Distribution of Ro is mapped in thin sections to make the Ro-distance pattern perpendicular to the fault plane. Within the fracture zone, abnormally high Ro (about 2.0% or above) was observed. Ro was 1.25% at the wall of fracture zone and decreases to 1.1% at about 5cm from the wall. We interpreted that the Ro-distance pattern was resulted from the thermal diffusion.
Using this diffusion pattern, the characteristic fault parameters, such as friction, slip rate and rise time (Tr) was examined. We set parameters Q (= friction times slip rate). We have simulated frictional heating and Ro maturation on the basis of the method by Sweeny and Burnham (1990). Grid search was conducted to find the best fitted combination of Q and Tr at the smallest residual between simulated Ro and observed Ro. In the result, we estimated about 1500 (Pa m/s) of Q and about 130000(s) of Tr.
Because the base temperature is about 185˚C based on the 1.1% of Ro, the depth of fault activity can be corresponded to about 6 km. The effective pressure is estimated about 94MPa. If we put friction coefficient as 0.4-0.6, the friction is about 37.6-56.5MPa. Therefore, slip rate is calculated to be about 27-40µm/s. This very slow slip rate is consistent with that for very low frequency earthquake (VLFe) reported by Sugioka et al. (2012).