T33C-4695:
Sedimentation in a Submarine Seamount Apron at Site U1431, International Ocean Discovery Program Expedition 349, South China Sea

Wednesday, 17 December 2014
Kelsie Anne Dadd, Macquarie University, Sydney, Australia, Peter Dominic Clift, Louisiana State University, Baton Rouge, LA, United States, Sangmin Hyun, KIOST Korea Institute of Ocean Science and Technology, Ansan, South Korea, Tao Jiang, China University of Geoscience, Wuhan, China and Zhifei Liu, Tongji University, Shanghai, China
Abstract:
International Ocean Discovery Program (IODP) Expedition 349 Site U1431 is located near the relict spreading ridge in the East Subbasin of the South China Sea. Holes at this site were drilled close to seamounts and intersected the volcaniclastic apron. Volcaniclastic breccia and sandstone at Site U1431 are dated as late middle Miocene to early late Miocene (~8–13 Ma), suggesting a 5 m.y. duration of seamount volcanism. The apron is approximately 200 m thick and is sandwiched between non-volcaniclastic units that represent the background sedimentation. These comprise dark greenish gray clay, silt, and nannofossil ooze interpreted as turbidite and hemipelagic deposits that accumulated at abyssal water depths. At its base, the seamount sequence begins with dark greenish gray sandstone, siltstone, and claystone in upward fining sequences interpreted as turbidites intercalated with minor intervals of volcaniclastic breccia. Upsection the number and thickness of breccia layers increases with some beds up to 4.8 m and possibly 14.5 m thick. The breccia is typically massive, ungraded, and poorly sorted with angular to subangular basaltic clasts, as well as minor reworked subrounded calcareous mudstone, mudstone, and sandstone clasts. Basaltic clasts include nonvesicular aphyric basalt, sparsely vesicular aphyric basalt, highly vesicular aphyric basalt, and nonvesicular glassy basalt. Mudstone clasts are clay rich and contain foraminifer fossils. The matrix comprises up to 40% of the breccia beds and is a mix of clay, finer grained altered basalt clasts, and mafic vitroclasts with rare foraminifer fossils. Some layers have calcite cement between clasts. Volcaniclastic sandstone and claystone cycles interbedded with the breccia layers have current ripples and parallel laminations indicative of high-energy flow conditions during sedimentation. The breccia beds were most likely deposited as a series of debris flows or grain flows. This interpretation is supported by their massive structure, poor sorting, and reverse-graded bases. The upper part of the apron grades back into the background clay, silt and nannofossil ooze sedimentation with minor volcaniclastic sand and silt.