S13A-4432:
Validation of S-wave Velocity beneath the Ise Bay, Central Japan, Using Continuous Short-period Ambient Noise Data

Monday, 15 December 2014
Takumi Hayashida1, Masayuki Yoshimi2 and Haruo Horikawa2, (1)Building Research Institute, Ibaraki, Japan, (2)Geological Survey of Japan, Tsukuba, Ibaraki, Japan
Abstract:
We have applied seismic interferometry to three-component ambient noise data recorded around the Ise bay area, central Japan, to validate published three-dimensional S-wave velocity models. For the bay area, detailed seismic velocity structure models have been constructed based on P-wave reflection surveys. There is no direct information on the S-wave velocities beneath the bay and the parameters are assigned by reference to those in a land area. We used one-year continuous data from 20 permanent stations of the NIED Hi-net (High-sensitivity seismograph network) to obtain stacked cross-correlation functions (CCFs) of ambient noise between station pairs that cross the bay. The CCFs were calculated, using one-hour data in the radial-radial (R-R), transverse-transverse (T-T) and vertical-vertical (Z-Z) directions for time lags of ±500s. Horizontal distances between the stations range form 15 km to 103 km. Although the Hi-net stations deploy seismometers with the natural period of 1 s, we found that the yearly stacked CCFs for selected 101 Hi-net station pairs are comparable with those derived from neighboring broadband seismic stations in the frequency range between 0.1 and 0.5 Hz, by deconvolving the instrument response. The CCFs shows clear Rayleigh waves from all directions in the R-R and Z-Z components, and clear Love waves in the T-T component with reasonable signal-to-noise ratios. The derived group velocities and waveforms of the wave trains are variable in the higher frequency range (> 0.2 Hz), indicating deep sedimentary basin beneath the bay. We compared obtained group velocities with theoretical ones to find systematic differences between the expected structure model from the CCFs and the published models in the northwest part of the bay, while the agreements are generally good for many other station pairs. This result indicates that the seismic interferometry technique provides valuable information for validation and improvement of a velocity structure model beneath bay or ocean areas.

Acknowledgements: We used continuous waveform records from Hi-net of the National Research Institute for Earthquake Science and Disaster Prevention (NIED).