B11B-0021:
Pore-scale Numerical Simulation Using Lattice Boltzmann Method for Mud Erosion in Methane Hydrate Bearing Layers

Monday, 15 December 2014
Takero Yoshida, Toru Sato and Hiroyuki Oyama, University of Tokyo, Kashiwa, Japan
Abstract:
Methane hydrates in subsea environments near Japan are believed to new natural gas resources. These methane hydrate crystals are very small and existed in the intergranular pores of sandy sediments in sand mud alternate layers. For gas production, several processes for recovering natural gas from the methane hydrate in a sedimentary reservoir have been proposed, but almost all technique are obtain dissociated gas from methane hydrates. When methane hydrates are dissociated, gas and water are existed. These gas and water are flown in pore space of sand mud alternate layers, and there is a possibility that the mud layer is eroded by these flows. It is considered that the mad erosion causes production trouble such as making skins or well instability. In this study, we carried out pore scale numerical simulation to represent mud erosion. This research aims to develop a fundamental simulation method based on LBM (Lattice Boltzmann Method). In the simulation, sand particles are generated numerically in simulation area which is approximately 200x200x200μm3. The periodic boundary condition is used except for mud layers. The water/gas flow in pore space is calculated by LBM, and shear stress distribution is obtained at the position flow interacting mud surface. From this shear stress, we consider that the driving force of mud erosion. As results, mud erosion can be reproduced numerically by adjusting the parameters such as critical shear stress. We confirmed that the simulation using LBM is appropriate for mud erosion.