Preparing for uncertainty: toward managing fluvial geomorphic assessment of Massachusetts rivers

Thursday, 18 December 2014
Christine E. Hatch1, Stephen B Mabee2, Noah B Slovin1 and Eve Vogel1, (1)University of Massachusetts Amherst, Department of Geosciences, Amherst, MA, United States, (2)Massachusetts Geological Survey, Amherst, MA, United States
Climate scientists predict (and have already observed) that in the Northeastern U.S., individual storms may be more intense, and that there will be more precipitation on an annual basis. In steep post-glacial terrain, erosion caused by floodwaters is the largest destructive force during high-intensity storm events, and the force most likely to drive major morphological changes to riverbanks and channels. What remains uncertain is which watersheds or river reaches may be subjected to increased damage from more intense storms. This presents a challenge for scientific outreach and management. Many New England states have developed systems for delineating the potentially geomorphically active zones adjacent to rivers, and Vermont has an excellent assessment and land use management system informed by process-based fluvial geomorphologic science. To date, however, Massachusetts has neither. In this project we survey existing protocols for accurately predicting locations of fluvial erosion hazard, including using LiDAR and DEM models to extract basic morphologic metrics. Particularly in states or landscapes with high river density, and during a time of tight fiscal constraints, managers need automated methods that require a minimum of expert input. We test these methods in the Deerfield river watershed in Massachusetts and Vermont, and integrate our knowledge with that of the basin’s agricultural and floodplain stakeholders. The results will inform development of a comprehensive river assessment and land use management system for the state of Massachusetts.