B13I-0304:
Effects of Green Space and Land Use/Land Cover on Urban Heat Island in a Subtropical Mega-city in China

Monday, 15 December 2014
Guo Yu Qiu, Xiangze Li, Hongyong Li and Qiuping Guo, PEKING UNIVERSITY, Xili, Nanshan, Shenzhen, China
Abstract:
With the quick expansion of urban in size and population, its urban heat island intensity (UHII, expressed as the temperature difference between urban and rural areas) increased rapidly. However, very few studies could quantitatively reveal the effects of green space and land use/land cover (LULC) on urban thermal environment because of lacking of the detailed measurement. This study focuses on quantifying the effects of green space and LULC on urban Heat Island (UHI) in Shenzhen, a mega subtropical city in China. Extensive measurements (air temperature and humidity) were made by mobile traverse method in a transect of 8 km in length, where a variety of LULC types were included. Measurements were carried out at 2 hours interval for 2 years (totally repeated for 7011 times). According to LULC types, we selected 5 different LULC types for studying, including water body, village in the city, shopping center (commercial area), urban green space (well-vegetated area) and suburb (forest). The main conclusions are obtained as follows: (1) The temperature difference between the 5 different urban landscapes is obvious, i.e. shopping center > village in the city > urban water body > urban green space > suburb; (2) Air temperature and UHII decreases linearly with the increase of green space in urban; (3) Green space and water body in urban have obvious effects to reduce the air temperature by evapotranspiration. Compared to the commercial areas, urban water body can relieve the IUHI by 0.9℃, while the urban green space can relieve the IUHI by 1.57℃. The cooling effect of the urban green space is better than that of the urban water body; (4) Periodic activity of human being has obvious effects on urban air temperature. The UHII on Saturday and Sunday are higher than that from Monday to Friday, respectively higher for 0.65, 0.57, 0.26 and 0.21℃. Thursday and Friday have the minimum air temperature and UHII. These results indicate that increase in urban evapotranspiration by increasing green space could be a useful way to improve urban thermal environment and mitigation of UHI.