T53C-4707:
The role of subducting bathymetric highs on the oceanic crust to deformation of accretionary wedge and earthquake segmentation in the Java forearc

Friday, 19 December 2014
Satish Chandra Singh1, Maruf Mukti1 and Ian Deighton2, (1)Institut de Physique du Globe de Paris, Paris, France, (2)TGS, Surbiton, United Kingdom
Abstract:
Stratigraphic and structural observations of newly acquired seismic reflection data along the offshore south Java reveal the structural style of deformation along the forearc and the role of subducting bathymetric highs to the morphology of the forearc region. The forearc region can be divided in to two major structural units: accretionary wedge and forearc and forearc basin where a backthrust marks the boundary between the accretionary wedge and the forearc basin sediments. The continuous compression in the subduction zone has induced younger landward-vergent folds and thrusts within the seaward margin of the forearc basin sediments, which together with the backthrust is referred as the Offshore South Java Fault Zone (OSJFZ), representing the growth of the accretionary wedge farther landward. Seaward-vergent imbricated thrusts have deformed the sediments in the accretionary wedge younging seaward, and have developed fold-thrust belts in the accretionary wedge toward trench. Together with the backthrusts, these seaward-vergent thrusts characterize the growth of accretionary wedge in South of Java trench. Based on these new results, we suggest that accretionary wedge mechanic is not the first order factor in shaping the morphology of the accretionary wedge complex. Instead the subducting bathymetric highs play the main role in shaping the forearc that are manifested in the uplift of the forearc high and intense deformation along the OSJFZ. These subducting highs also induce compression within the accretionary sediments, evident from landward deflection of the subduction front at the trench and inner part of accretionary wedge in the seaward margin of the forearc basin. Intense deformation is also observed on the seaward portion of the accretionary wedge area where the bathymetric highs subducted. We suggest that these subducted bathymetric features define the segment boundaries for megathrust earthquakes, and hence reducing the maximum size of the earthquakes in the Java subduction zone.