High Precision Measurements of Temperature Dependence of Creep Rate of Polycrystalline Forsterite

Tuesday, 16 December 2014
Tadashi Nakakoji and Takehiko Hiraga, Earthquake Research Institute, University of Tokyo, Tokyo, Japan
Obtaining temperature dependence of creep rate, that is, activation energy for the creep is critical in geophysics, since its value can indicate deformation mechanism and also allows to extrapolate the creep rate measured in the room experiments to geological conditions when the creep mechanism is identical in both cases. Although numerous experimental results have been obtained so far, the obtained activation energy often contains error range of >50 kJ/mol, which often causes large uncertainties in strain rate at applied geological conditions. To minimize this error, it is important to collect strain rates at many different temperatures with high accuracy. We conducted high temperature compression experiments on synthetic forsterite (90%vol) and enstatite (10vol %) aggregates under increasing and decreasing temperatures. We applied a constant load of ~20 MPa using uniaxial testing machine (Shimadzu AG-X 50kN). The temperature was changed from 1360°C to 1240°C by furnace attached to the machine. Prior to the applying the load to the samples the grain size was saturated at 1360°C for 24 hours to minimize grain growth during the test. Decreasing-rate of temperature was 0.11min/°C and 0.02min/°C at temperature ranges of 1360 to 1300 and 1300 to 1240 respectively. The increasing-rate of the temperature was the same as the decreasing-rate. Strain rates from every 1 degree were obtained successfully. After the experiment, we analyzed the microstructure of the sample with scanning electron microscopy to measure the grain diameter. Arrhenius plots of strain rate demonstrate very linear distribution at > 1300 °C giving an activation energy of 649 ± 14 kJ/mol, whereas weak transition to lower activation energy 550 ± 23 kJ/mol below 1300°C was observed. Tasaka et al. (2013) obtained the activation energy of 370 ± 50 kJ/mol from similar temperature ranges used in our study but finer-grained samples. Combining these results, we interpret our results of high activation energy to lattice diffusion of Si and lower activation energy to apparent values where deformation mechanism transits from volume diffusion to grain boundary diffusion at lower temperature condition.