V41A-4756:
Application of the TitaniQ Geothermobarometer to metamorphic rocks of the Santa Rosa Mylonite Zone in southern California
Abstract:
In order to study the behavior of the crust in different regions and over time, it remains important to be able to quantify the pressure (P) and temperature (T) conditions of metamorphism in exhumed rocks. The recently developed technique, known as “Titanium-in-quartz” (TitaniQ) shows particular promise as both a geothermometer and geobarometer, because it focuses on one of the most abundant minerals on Earth—quartz—and it can thus be applied to a very wide range of rock types. Despite the potential of TitaniQ, two aspects of the technique remain poorly understood. Firstly, the two most recently developed calibrations predict Ti concentrations that differ by close to a factor of three at the same temperature. Secondly, the effect of deformation on Ti re-equilibration at temperatures where static diffusion is sluggish is debated. We address these aspects of the TitaniQ thermobarometer by applying the technique to a suite of rocks in the Santa Rosa mylonite zone of eastern California that were deformed and metamorphosed at known P-T conditions.The Santa Rosa mylonite zone is a 100-km-long Cretaceous ductile thrust system that juxtaposes deformed metasedimentary rocks (P = 3-5 kbar, T = 600-800 C) known as the Palm Canyon Series in the hanging wall against mylonitized granodiorites (P 4-5 kbar, T = 400-550) of the Peninsular Ranges Batholith in the footwall. The Palm Canyon series includes quartzites, amphibolites and garnet-mica schists, most of which contain titanite as the primary Ti-bearing phase. We measure Ti concentrations in several samples from this unit to see whether they are consistent among different rock types and whether calibrations of the TitaniQ thermobarometer match the P-T conditions constrained by mineral assemblages. The granodiorites show a distinct strain gradient developed over approximately one kilometer as they are incorporated into the Santa Rosa mylonite zone; they range from weakly deformed at the shear zone margin to ultramylonitic in the shear zone core. We examine Ti concentrations in rocks collected across this strain gradient to determine the degree to which progressive strain (accommodated by pervasive dynamic recrystallization) can redistribute Ti in quartz.