A44D-06:
A Mixed Phase Tale: New Ways of using in-situ cloud observations to reduce climate model biases in Southern Ocean
Thursday, 18 December 2014: 5:16 PM
Andrew Gettelman, NCAR, Boulder, CO, United States and Jeffrey L Stith, NCAR Rsch Aviation Facility, Broomfield, CO, United States
Abstract:
Southern ocean clouds are a critical part of the earth’s energy budget, and significant biases in the climatology of these clouds exist in models used to predict climate change. We compare in situ measurements of cloud microphysical properties of ice and liquid over the S. Ocean with constrained output from the atmospheric component of an Earth System Model. Observations taken during the HIAPER (the NSF/NCAR G-V aircraft) Pole-to-Pole Observations (HIPPO) multi-year field campaign are compared with simulations from the atmospheric component of the Community Earth System Model (CESM). Remarkably, CESM is able to accurately simulate the locations of cloud formation, and even cloud microphysical properties are comparable between the model and observations. Significantly, the simulations do not predict sufficient supercooled liquid. Altering the model cloud and aerosol processes to better reproduce the observations of supercooled liquid acts to reduce long-standing biases in S. Ocean clouds in CESM, which are typical of other models. Furthermore, sensitivity tests show where better observational constraints on aerosols and cloud microphysics can reduce uncertainty and biases in global models. These results are intended to show how we can connect large scale simulations with field observations in the S. Ocean to better understand Southern Ocean cloud processes and reduce biases in global climate simulations.