V21B-4753:
Vesicularity variation to pyroclasts from silicic eruptions at Laguna del Maule volcanic complex, Chile

Tuesday, 16 December 2014
Heather Michelle Nicholson Wright1, Judy Fierstein2, Alvaro Amigo3 and Jonathan Miranda1, (1)USGS Cascades Volcano Observatory, Vancouver, WA, United States, (2)US Geological Survey, Menlo Park, CA, United States, (3)Servicio Nacional de Geologia y Mineria - SERNAGEOMIN, Talca, Chile
Abstract:
Crystal-poor rhyodacitic to rhyolitic volcanic eruptions at Laguna del Maule volcanic complex, Chile have produced an astonishing range of textural variation to pyroclasts. Here, we focus on eruptive deposits from two Quaternary eruptions from vents on the northwestern side of the Laguna del Maule basin: the rhyolite of Loma de Los Espejos and the rhyodacite of Laguna Sin Puerto.

Clasts in the pyroclastic fall and pyroclastic flow deposits from the rhyolite of Loma de Los Espejos range from dense, non-vesicular (obsidian) to highly vesicular, frothy (coarsely vesicular reticulite); where vesicularity varies from <1% to >90%. Bulk compositions range from 75.6-76.7 wt.% SiO2. The highest vesicularity clasts are found in early fall deposits and widely dispersed pyroclastic flow deposits; the frothy carapace to lava flows is similarly highly vesicular. Pyroclastic deposits also contain tube pumice, and macroscopically folded, finely vesicular, breadcrusted, and heterogeneously vesiculated textures. We speculate that preservation of the highest vesicularities requires relatively low decompression rates or open system degassing such that relaxation times were sufficient to allow extensive vesiculation. Such an inference is in apparent contradiction to documentation of Plinian dispersal to the eruption.

Clasts in the pyroclastic fall deposit of the rhyodacite (68-72 wt.% SiO2) of Laguna Sin Puerto are finely vesicular, with vesicularity modes at ~50% and ~68% corresponding to gray and white pumice colors, respectively. Some clasts are banded in color (and vesicularity). All clasts were fragmented into highly angular particles, with subplanar to slightly concave exterior surfaces (average Wadell Roundness of clast margins between 0.32 and 0.39), indicating brittle fragmentation. In contrast to Loma de Los Espejos, high bubble number densities to Laguna Sin Puerto rhyodacite imply high decompression rates.