Ground Motion Simulations for Bursa Region (Turkey) Using Input Parameters derived from the Regional Seismic Network

Monday, 15 December 2014
Baris Unal and Aysegul Askan, Middle East Technical University, Ankara, Turkey
Earthquakes are among the most destructive natural disasters in Turkey and it is important to assess seismicity in different regions with the use of seismic networks. Bursa is located in Marmara Region, Northwestern Turkey and to the south of the very active North Anatolian Fault Zone. With around three million inhabitants and key industrial facilities of the country, Bursa is the fourth largest city in Turkey. Since most of the focus is on North Anatolian Fault zone, despite its significant seismicity, Bursa area has not been investigated extensively until recently. For reliable seismic hazard estimations and seismic design of structures, assessment of potential ground motions in this region is essential using both recorded and simulated data. In this study, we employ stochastic finite-fault simulation with dynamic corner frequency approach to model previous events as well to assess potential earthquakes in Bursa. To ensure simulations with reliable synthetic ground motion outputs, the input parameters must be carefully derived from regional data. In this study, using strong motion data collected at 33 stations in the region, site-specific parameters such as near-surface high frequency attenuation parameter and amplifications are obtained. Similarly, source and path parameters are adopted from previous studies that as well employ regional data. Initially, major previous events in the region are verified by comparing the records with the corresponding synthetics. Then simulations of scenario events in the region are performed. We present the results in terms of spatial distribution of peak ground motion parameters and time histories at selected locations.