NS43A-3851:
Seismic Reflection – Focusing on Muting Jacquelyn Daves University of Colorado – Boulder SAGE 2014

Thursday, 18 December 2014
Jacquelyn Daves, University of Colorado at Boulder, Boulder, CO, United States
Abstract:
The SAGE 2014 survey was conducted directly west of the Santo Domingo Pueblo, along Borrego Canyon Road. This survey is a continuation of the SAGE 2010 and 2011 investigations. The survey was aimed to locate a previously mapped fault running orthogonal to the road. The SAGE 2014 seismic line ran 5.6 km long with 20 meter geophone spacing. 8-80 Hz sweeps were utilized with 10 s sweeps and 4 s of listening. Once the data was converted into the proper file type, preprocesses was conducted. After the preprocessing was complete, various processing methods were used to obtain the final Common Midpoint (CMP) stack. Two CMP stacks were created-one containing the muting method and one without. The ideal result would be to interpret stratigraphic structures and potential faults.

The Rio Grande Rift is a Cenozoic continental rift zone that extends approximately 1000 km from Leadville, Colorado to west Texas and Chihuahua, Mexico. The Northern most extent of the rift separates the Great Plains from the Colorado Plateau. The rift consists of a series of interconnected grabbens that lie in an asymmetric pattern (Baldridge, 1989). Basins involved with this rifting are a distinct features along with faults that bound one or both sides. SAGE has been investigating these for over a decade to interpolate the complex structures. By examining Borrego Canyon, we were able to add to the investigation.

Various geophysical methods were utilized to study Borrego Canyon. AMT, MT, TEM, gravity, seismic reflection and seismic refraction were individually used to understand the subsurface and were subsequently integrated together in order to have a full spectrum of subsurface depths. Each method has unique processing steps and are critical in order to analyze the gathered data. As such, this paper will focus on processing seismic reflection with an emphasis on muting.

Each technique used in processing the SAGE 2014 seismic reflection data will be explained. Next, this paper will validate muting in seismic reflection processing and demonstrate its importance in obtaining an accurate and visually pleasing final product. With the final product, a brief geological interpretation of the subsurface can be conducted. An explanation of the poor data and the lack of reflections will be given.