H31B-0623:
A Transient Groundwater Flow Model for Evaluating River-Aquifer Exchange

Wednesday, 17 December 2014
Andrea Zanini1, Alessandro Chelli1, Roberto Pecoraro2 and Fulvio Celico1, (1)University of Parma, Parma, Italy, (2)versalis s.p.a, QHSE, San Donato Milanese (MI), Italy
Abstract:
The study area is an industrial site (in the North of Italy) contaminated through heavy metal and chlorinated hydrocarbons. The site presents an area of about 5 km2 and a complex geology. During 2013 and 2014 the hydrogeological conceptual model was reviewed and the result was a main unconfined aquifer that presents an impervious bottom at about 30 m below ground. A small portion of the aquifer is split by a non-continuous aquitard. Below the impervious bottom, there are confined aquifers that are not polluted. The boundary conditions of the aquifer are constant head upstream (obtained from a regional piezometry) and constant head downstream that represents a lake stage. Moreover a river inside the study area, that could feed or dry the aquifer depending on its stage, manages the groundwater head levels. The study area presents more than 100 pumping wells that have the objective of realizing a hydraulic barrier and to prevent the flow of pollutants downstream. The area is monitored with about 120 monitoring wells, which are used, through a periodic sampling and monitoring, to control the pollution and to estimate the flow direction. During the last year a numerical flow model has been developed by means of MODFLOW 2000 (Harbaugh, 2000) with the aim at becoming a management tool of the hydraulic barrier. The calibration procedure, initially, was performed in steady state condition using the PEST procedure (Doherty, 2007). The goal was to reproduce the monthly observations at the monitoring wells varying the hydraulic conductivity of the main aquifer and of the aquitard. The second step of the calibration was the extension of the calibration to transient data. The period from September 1st 2013 to June 31st 2014 was reproduced. In order to avoid problem with the starting conditions only the observations collected in 2014 were used to estimate the aquifer parameters. The period September 1st 2013 to December 31st was used as warm up in order to obtain reliable starting conditions for the 2014. The result of the work was a model that allows to reproduce with high reliability the collected observations and to understand the groundwater flow direction depending on the river stage.