Sorting during Migration of Aeolian Megaripples

Friday, 19 December 2014: 8:15 AM
Robert J Sullivan Jr, Cornell University, Ithaca, NY, United States and James R Zimbelman, Smithsonian Inst, Washington, DC, United States
Aeolian sediments commonly are well sorted. However, aeolian megaripples (aka coarse-grained ripples or granule ripples) have bimodal grain size-frequencies. Distinguishing aeolian megaripple deposits from mixed grain size fluvial deposits is important, particularly for martian sedimentary rocks where implications for flowing water in the martian past (if revealed by legitimate fluvial deposits) are important mission drivers for rovers and landers. Aeolian megaripples are relatively minor components of terrestrial aeolian settings (e.g., as interdune features), but on Mars, megaripples have been encountered in many locations by landers and rovers, are durable due to indurated, armoring surface layers of very coarse sand, and therefore are likely candidates for preservation in the martian sedimentary rock record. Unfortunately, megaripple deposits preserved in martian sedimentary rocks must be recognized with much less data or context than obtained typically during terrestrial fieldwork.

We have undertaken wind tunnel experiments and fieldwork to assist interpretations distinguishing aeolian megaripple deposits from mixed grain fluvial materials. Lags of coarse or very coarse sand from ancient aeolian environments within the White Rim Sandstone, Canyonlands NP, UT, and at some localities along the J2 Unconformity at Buckhorn Wash, UT, are well sorted, with a sharply defined maximum grain size in each case. We conducted wind tunnel experiments to explore whether the well-sorted, sharp cutoff in maximum grain size of the coarse fraction in these deposits could be diagnostic of aeolian megaripple formation and migration. Wind tunnel experiments involved 250 μm sand saltating against 600-2800 μm grains. For a given wind tunnel speed, only a narrow grain size range appeared on megaripple surfaces as these bedforms developed spontaneously from the bed; somewhat finer grains migrated rapidly downwind, while slightly coarser grains remained immobile. The physics of saltation-driven creep seems to explain this effect. Saltation-driven creep rapidly segregates the grains downwind according to size, partly because the mass of the coarse target grain increases greatly with only minor increases in grain radius and this can be only partly compensated by increasing the saltating grain speed.