T31C-4637:
Micro-Raman and micro-XRF analysis of glass beads from the Chungde site, Taiwan
Wednesday, 17 December 2014
Ying-San Liou, National Dong Hwa University, Hualien County, Taiwan, Shih-Chung Wang, Dahan Institute of Technology, Department of Civil Engineering and Resource Management, Hualien, Taiwan and Yi-Chang Liu, Academia Sinica, Institute of History and Philology, Taipei, Taiwan
Abstract:
A large number of ancient glass beads dating back from Late Neolithic Age to early Historical Period (ca. 2300-400 BP) of Taiwan have been uncovered from archaeological sites. These glass beads with variant colors, shapes, and stylistics have long been considered to possess socio-cultural significance. Due to the color and chemical composition of glass bead might be determined by raw materials, fluxing agents, colorants, opacifiers and stabilizers. In addition, ancient glass beads are rare and precious, non-destructive analysis has been employed to decipher about the provenances, manufacturing techniques, and exchange/trade routes. In this work, micro-Raman spectroscopy and micro X-ray fluorescent spectrometer (μ-XRF) were used to examine ten ancient glass beads excavated from the Chungde site, Hualien, Taiwan, dating back to 1500-800 BP, to unravel the mineralogical and chemical compositions. Micro Raman experimental results show that glass and anorthite glass are the main constituents accompanying with trace level of quartz, albite, siderite, ankerite, and amazonite. The Raman Index of Polymerization (Ip) indicate that the sintering temperature of the glass beads is in the range of 1000~1400°C. Furthermore, the chemical compositions are corresponding to the maximum stretching vibration peak wave number (νmax Si-O Stretching) and the maximum bending vibration peak wave number (δmax Si-O Bending), which are essentially consistent with that of the India-Pacific beads. The μ-XRF results indicate the presence of oxides including SiO2, Al2O3, Fe2O3, Na2O, K2O, CaO, MgO, SnO2, TiO2, CuO, etc., and could be classified to high aluminum of soda-lime glass system. According to ternary phase diagram analysis of CaO-K2O-Na2O and K2O-Al2O3-CaO, the ancient glass beads analyzed could be attributed to the India-Pacific beads, and is in accordance with that of Raman spectra. The combination of these facts leads to the conclusion that glass beads obtained from the Chungde site may be ascribed to the India-Pacific beads.