The Shallow Subsurface Geological Structures at the Chang’E-3 Landing Site Based on Lunar Penetrating Radar Channel-2B Data

Monday, 15 December 2014
Na Zhao, Peimin Zhu, Yuefeng Yuan, Kesi Yang, Long Xiao and Zhiyong Xiao, China University of Geosciences, Wuhan, China
The Lunar Penetrating Radar (LPR) carried by the Yutu rover of the Chinese Chang’E-3 mission has detected the shallow subsurface structures for the landing site at the northern Mare Imbrium. The antenna B of the LPR Channel-2 has collected more than 2000 traces of usable raw data. We performed calibration on the LPR data including amplitude compensation, filtering, and deconvolution. The processed results reveal that the shallow subsurface of the landing site can be divided into three major layers whose thicknesses are ~1, ~3, and 2-7 m, respectively. Variations occur on the thickness of each layer at different locations. Considering the geological background of the landing site, we interpret that the first layer is the regolith layer accumulated over ~80 Ma since the formation of the 450 m diameter Chang’E A crater. This regolith layer was formed on the basis of the ejecta deposits of Chang’E A. The second layer is the remnant continuous ejecta deposits from the Chang’E A crater, which is thicker closer to the crater rim and thinning outwardly. The Chang’E A crater formed on a paleo-regolith layer over the Eratosthenian basalts, which represents the third layer detected by the Channel 2B of the LPR.