P51F-07:
REVISITING UVIS OBSERVATIONS OF THE ENCELADUS WATER VAPOR PLUME
Friday, 19 December 2014: 9:20 AM
Ganna Portyankina, University of Colorado at Boulder, Boulder, CO, United States
Abstract:
The Cassini Ultraviolet Imaging Spectrograph (UVIS) onboard Cassini spacecraft observed occultations of several stars and the Sun by the water vapor plume and separate jets emitting from the southern pole of Enceladus [Hansen et al., 2006 and 2011]. During the solar occultation separate collimated gas jets were detected inside the background plume. These observations provide data about water vapor column densities along the line of sight of the UVIS instrument. Monte Carlo simulations and Direct Simulation Monte Carlo (DSMC) are used to model the plume of Enceladus including an option to add multiple jet sources to the general background plume. The models account for molecular collisions, gravitational and Coriolis forces. Jet sources can differ in production rate and velocity distribution of the water molecules emitted. Recent observations of the visible dust plume by the Cassini Imaging Science Subsystem (ISS) identified as many as 98 jet sources located along Tiger stripes [Porco et al. 2014]. We applied the spatial distribution of the sources observed by ISS in our models. The output of the models are the 3-D distribution of water vapor density and surface deposition patterns. Comparison between the simulation results and column densitioes derived from UVIS observations provide constraints on the physical characteristics of the plume and jets.