NS32A-06:
IRECCSEM: Evaluating Clare Basin potential for onshore carbon sequestration using magnetotelluric data (Preliminary results). New approaches applied for processing, modeling and interpretation
Wednesday, 17 December 2014: 11:35 AM
Joan Campanya i Llovet, Xenia Ogaya, Alan G Jones and Volker Rath, Dublin Institute for Advanced Studies, Dublin, Ireland
Abstract:
The IRECCSEM project (www.ireccsem.ie) is a Science Foundation Ireland Investigator Project that is funded to evaluate Ireland’s potential for onshore carbon sequestration in saline aquifers by integrating new electromagnetic data with existing geophysical and geological data. The main goals of the project are to determine porosity-permeability values of the potential reservoir formation as well as to evaluate the integrity of the seal formation. During the Summer of 2014 a magnetotelluric (MT) survey was carried out at the Clare basin (Ireland). A total of 140 sites were acquired including audiomagnetotelluric (AMT), broadband magnetotelluric (BBMT) and long period magnetotelluric (LMT) data. The nominal space between sites is 0.6 km for AMT sites, 1.2 km for BBMT sites and 8 km for LMT sites. To evaluate the potential for carbon sequestration of the Clare basin three advances on geophysical methodology related to electromagnetic techniques were applied. First of all, processing of the MT data was improved following the recently published ELICIT methodology. Secondly, during the inversion process, the electrical resistivity distribution of the subsurface was constrained combining three different tensor relationships: Impedances (Z), induction arrows (TIP) and multi-site horizontal magnetic transfer-functions (HMT). Results from synthetic models were used to evaluate the sensitivity and properties of each tensor relationship. Finally, a computer code was developed, which employs a stabilized least squares approach to estimate the cementation exponent in the generalized Archie law formulated by Glover (2010). This allows relating MT-derived electrical resistivity models to porosity distributions. The final aim of this procedure is to generalize the porosity – permeability values measured in the boreholes to regional scales. This methodology will contribute to the evaluation of possible sequestration targets in the study area.