PP33C-1261:
Global Ice-loading History Reconstructed Over Five Glacial Cycles

Wednesday, 17 December 2014
Felicity Helen Williams1, Katharine M Grant2, Mark E Tamisiea3, Eelco Johan Rohling1 and Fiona D Hibbert1, (1)University of Southampton, Southampton, SO14, United Kingdom, (2)Australian National University, Canberra, Australia, (3)National Oceanography Centre, Liverpool, United Kingdom
Abstract:
High resolution ice-loading reconstructions are a vital tool not only for palaeoclimate studies, but also for providing a palaeoenvironmental context to human development. Here we present a global ice-loading history developed using the high resolution, Red Sea relative sea-level (RSL) record. (Siddall et al. 2003, Rohling et al. 2009, Grant et al. in submission)

We use glacial isostatic adjustment modelling to determine a set of corrections to the Red Sea RSL record, which is then translated into a global mean sea level. This global mean sea level allows us to calculate a global ice volume. Global ice volume is geographically distributed within our ice-loading history according to currently available data regarding ice margins, their timing, and constraints on maximum ice load. Where constraints are sparse we use a combination of ICE-5G (Peltier, 2004) and the de Boer coupled ice sheet model (de Boer et al, 2014) as a template for ice distribution. Although an ice-loading history for the past 5 Myr exists, this is the first time that geographic constraints have been applied to global ice volumes over 5 glacial cycles. Our ice-loading reconstruction is further supported by the high resolution of our source RSL data.

Our ice-loading history is tested against a global compilation of coral sea-level indicators (Hibbert et al., in prep.), and compared with ice histories developed from alternate ice volume reconstructions or RSL records, including a global ice history based on that developed by de Boer et al. (2014), the sea-level record of Waelbroeck et al. (2002) and a simple ice history based on the δ18O stack of Lisiecki and Raymo (2005).