B21D-0074:
The first actual record of deep open-ocean conditions in the Ediacaran: Fe speciation in pelagic deep-sea sediments in accretionary complexes in Wales, UK

Tuesday, 16 December 2014
Tomohiko Sato1, Hisashi Asanuma1, Yoshihiro Okada1, Shigenori Maruyama1, Katsumi Shozugawa2, Motoyuki Matsuo2 and Brian F Windley3, (1)Tokyo Institute of Technology, Tokyo, Japan, (2)University of Tokyo, Tokyo, Japan, (3)University of Leicester, Leicester, United Kingdom
Abstract:
The first oxidation of a deep ocean in Earth history is considered to have occurred in the Neoproterozoic, coincident with the metazoan diversification; however, the Neoproterozoic geological record has so far been limited to only continental shelves, slopes, or basins at the deepest. Here, we document Neoproterozoic pelagic deep-sea sediments in reconstructed oceanic plate stratigraphy (OPS) in accretionary complexes (ACs) in Anglesey and Lleyn, Wales, UK. The OPS mostly consists of mid-ocean ridge basalts, pelagic red-bedded cherts, hemipelagic siliceous mudstones and turbidite sandstones, in ascending order. Only at Porth Felen in Lleyn Peninsula does the OPS contain black mudstones (ca. 10 m-thick) instead of pelagic red-bedded cherts. Based on the tectonic reconstruction of these ACs, the OPS at Porth Felen has the oldest depositional age. Our new U-Pb date of detrital zircons separated from the turbidite sandstones at Porth Felen has the youngest age of 580±13 Ma. These results suggest that the black mudstones at Porth Felen were deposited no later than the early Ediacaran. We have analyzed these black mudstones by 57Fe Mössbauer spectroscopy, and found that about a quarter of their iron content is contained in pyrite, while the other components are paramagnetic Fe2+ or occasionally paramagnetic Fe3+ in clay minerals. The red cherts in the younger OPS contain hematite as the main iron mineral, paramagnetic Fe3+, and paramagnetic Fe2+. The occurrence of hematite in a deep-sea chert essentially indicates a primary oxidizing depositional condition, whereas pyrite is indicative of a reducing environment. The present data confirm that a reducing deep-sea existed in the early Ediacaran during the black mudstone deposition, and that an oxidizing deep-sea had been established by the late Ediacaran. In conclusion, our results provide the first direct evidence of an actual deep open-ocean in the Ediacaran to clarify the timing and extent of the Neoproterozoic Oxygenation Event.