SH21C-4130:
Computing Solar EUV Irradiance Variability
Tuesday, 16 December 2014
Harry P Warren, Naval Research Lab DC, Washington, DC, United States
Abstract:
The solar EUV irradiance plays a central role in determining the state of the Earth’s upper atmosphere. The EUV irradiance at the shortest wavelengths, which is highly variable over time scales from seconds to decades, is particularly important for many aspects of space weather. Systematic spectrally resolved observations at the shortest EUV wavelengths, however, have been rare and there is a need to develop a methodology for estimating and forecasting the solar irradiance at all EUV wavelengths from sparse data sets. In this presentation we report on our efforts to use AIA DEM calculations to estimate the solar EUV irradiance at wavelength below 450 Å, where the emission is predominately optically thin. To validate our AIA DEM calculations we have performed extensive comparisons with simultaneous observations from the EVE instrument on SDO and the EIS instrument on Hinode and find that with the proper constraints we can generally reproduce the results obtained with detailed spectroscopic observations. Using a proxy for solar activity derived from photospheric magnetic field measurements we extend our model calculations to previous solar cycles and discuss how the model can be used to forecast EUV irradiance variability over short time scales. Finally, we speculate on what is needed to further develop semi-empirical and physical models for use in understanding the solar spectral irradiance at these wavelengths.