H43A-0944:
Simulating the Mineral Scale by High Pressure Thermal Vessel
Thursday, 18 December 2014
Yi-Hua Huang1, Hua-Lin Liu2, Huei-Fen Chen2 and Sheng-Rong Song3, (1)Department of Geoscience, National Taiwan University, Taipei, Taiwan, (2)NTOU National Taiwan Ocean University, Keelung, Taiwan, (3)NTU National Taiwan University, Taipei, Taiwan
Abstract:
The generating capacity of Chingshui geothermal power plant decreased rapidly after it had operated three years. Chinese Petroleum Corporation (CPC) attributed the main reason was the depletion of reservoir. One reason was that the reservoir did not be recharged. And the other was the mineral scale in reservoir and pipes which caused flow rate decreased. There are abundant geothermal energy in Taiwan. But in Chingshui, the spring has amount content of carbonate. Most scaling are calcium carbonate and silica. These two materials have different solubility in various pH and physical conditions. Because the pressure reduced in the process of upwelling, the hot spring from the reservoir deposited calcium carbonate immediately by large carbon dioxide escape. This result caused the diameter of pipeline reduced. Besides, as the temperature decreased, the silica would scaling in the part of heat exchanger. To avoid the failure experience in Chingshui , how to prevent the mineral scaling is the key point that we need to solve. Our study will use hydrothermal experiments by High Pressure Thermal Vessel to simulate the process of spring water upwelling from reservoir to surface, to understand whether calcium carbonate and silica scaling or not in different temperature and pressure. This study choose the Hongchailin well as objects to simulate, and the target layers of drilling well were set as Szeleng sandstone and Lushan slate. We used pure water and saturated water pressure in our experiments. There were four vessels in High thermal vessel. The first vessel was used to simulate the condition of reservoir. The second and third vessel were simulated the conditions in the well when spring water upwelling to the surface. And the last vessel was simulated the conditions on surface surroundings. We hope to get the temperature and pressure when the scaling occurred, and verified with the computing result, thus we can inhibit the scaling.