C13B-0438:
Increasing Freshwater Runoff and Tidal Action Influences on Spatial Mixing Patterns in Søndre Strømfjord, West Greenland

Monday, 15 December 2014
Crystal R Smiley1, Nicholas Kamenos2, Trevor Hoey2, Finlo Cottier3 and Robert M Ellam4, (1)University of Glasgow, Glasgow, G12, United Kingdom, (2)University of Glasgow, Glasgow, United Kingdom, (3)Scottish Assoc Marine Science, Argyll, United Kingdom, (4)Scottish Universities Environmental Research Center at the University of Glasgow, East Kilbride, United Kingdom
Abstract:
Greenland Ice Sheet melt has the potential to affect global sea levels and the strength of the thermohaline circulation (THC). Investigating spatial mixing patterns of seawater in Greenlandic fjords can help reveal characteristics of changes in runoff from the GrIS; for example higher runoff may be associated with lower salinity within GrIS fjords, which can be recorded by palaeoenvironmental proxies (Kamenos et al 2012). The Kangerlussuaq Drainage Basin mirrors melt patterns of the whole GrIS and drains into Søndre Strømfjord, a 170km long fjord on the west coast of Greenland. Temperature and salinity profiles to 40m depth were obtained at 11 stations along Søndre Strømfjord during the 2014 melt season. Each station was sampled twice once at high KDB runoff and once at low KDB runoff. With increasing freshwater runoff, salinity decreases by 1.65 – 2.91 at each station over a 7 hour time period. Higher salinities occur at low run-off. In addition, with increasing run-off, the disparity between surface and deeper water (30m) becomes greater with a 19.3 difference between the surface and 30m. With higher KDB runoff temperature increases by 0.47oC – 2.34oC. This information will be integrated with oxygen and deuterium isotope patterns to pinpoint the exact source of the runoff causing salinity reductions. Our data show a relationship between KDB runoff and salinity of Søndre Strømfjord, data that will enable further calibration of marine proxies of GrIS melt.