Subsidence and Collapse Activity in Arabia Terra, Mars: Which Link with Magmatic Activity?

Wednesday, 17 December 2014: 2:25 PM
Nicolas Mangold, LPGN Laboratoire de Planétologie et Géodynamique de Nantes, Nantes Cedex 03, France and Alan D Howard, University of Virginia Main Campus, Charlottesville, VA, United States
Collapsed terrains have been observed using Viking images in the northern part of Arabia Terra from Ismenius Lacus to Deuteronilus Mensae. Recent interpretations of some of these depressions as explosive volcanoes (Michalski and Bleacher, 2013) have renewed the interest for this region. However, recent observations also show the discovery in this region of a series of outflow channels named Okavango Valles (Mangold and Howard, 2013). These channels formed in the Hesperian through catastrophic flows having deposited sediments as deltas in ephemeral lakes. The source area of these channels takes place in a region of widespread depressions and local collapse pits. A continuum of landforms exists from broad depressions (~100 km in length and 100s m in depth) and sharper collapse structures (<100 km in diameter). Given the link between these depressions and the presence of outflow channels, we interpret the collapse structures as resulting from a specific lithology with volatile-rich sediments (or megaregolith) buried at depth. Collapse may be due either to the melting of subsurface ice, or subsurface flows triggered by a change in the groundwater table, or the (less likely) dissolution of buried chemical sediments. Magmatic activity is not excluded: a regionally enhanced thermal flux during the Hesperian could have triggered ground ice melting, and could have initiated subsidence subsequently, but explosive volcanism at the surface is not necessary to explain the presence of large collapsed terrains.

Michalski, J. and J. Bleacher, 2013. Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars, Nature, doi:10.1038/nature12482

Mangold N., and A. D. Howard, 2013. Outflow channels with deltaic deposits in Ismenius Lacus, Mars, Icarus, doi.org/10.1016/j.icarus.2013.05.040